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CONNECTION BETWEEN WALL STREAKS AND TIME~AVERAGED VELOCITY

PROFILES IN A TURBULENT BOUNDARY LAYER

By

R. L. Ash*

Abstract

The effect of coherent flow structures on the mean velocity profile of
a flat plate boundary layer has been investigated. By assuming the near
wall “"streak structure” can be modeled by power series expansions in terms
of the wall normal coordinate, the equations of motion have been used to
define a solution domain. Requirements imposed by the time-averaged wall
streak functions can be accommodated by series representations of the mean
velocity profile out to yt of about 15, where the solution and series begin
to depart. That result is in good agreement with the experimental obser-
vations of Kline et al.2 1In addition, the Reynolds stress distribution
implied by interpreting the coefficients for the mean velocity profile in

terms of streak functions is in good agreement with other data.

*Professor, Department of Mechanical Engineering and Mechanics, Old Dominion
University, Norfolk, VA . 23508.



Discussion

Recently Cantwelll has summarized research on organized structure in
turbulent flows. The structural features in a turbulent boundary layer
include low-speed streaks near the wall which are intermittant and highly
three-dimensional. Kline et al.? in 1967 reported first details of those
structures and defined a cycle of events which, though distributed randomly
in space and time, are repetitive. If attention 1s restricted to the sim-
plest case of a constant density, flat plate boundary layer with no pressure
gradient, the question of how the three-dimensional, near wall flow struc-
ture affects the time-averaged velocity'profile can be addressed.

In the vieinity of the wall (y = 0), the inner boundary conditions
obviously must dominate. TFurthermore, it is reasonable to assume that the
three-dimensional, unsteady equations of motion have a solution which can be

expanded in a power series of y near the wall. The dimensionless governing

equations are

> >

Veu=90 )
_2';_=_3P+lvz; 2)
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where the velocity vector & is made dimensionless with the friction
velocity u, the coordinates are normalized with respect to the boundary=-
layer thickness §, pressure is normalized with respect to wall shear stress

Ty, and time is expressed in units of G/uT. The term R is a Reynolds

number defined by R = uTG/v. It should be noted that the dimensionless



x—-component of veloecity u, is the same as ut, and the dimensionless vertical

y-coordinate is related to y* by

Ry = y+ (3)

If the velocity components u, v, and w, and pressure are assumed
expressible in power series of y, consistent with the inner boundary condi-

tions and continuity, they mast take the form:

u = z un(x,z,t)yn (4)
n=1

ve ) v (x,2,t)y" 6))
n=2 =

w o= z W (x,z,t)yn (6)
n=1 o

and
P=P (x,2,t) + | P (x,z,t)y" o))

n=1

where P,(x,z,t) is the wall pressure. By equating coefficients with the
same powers 6f y in Eqs. (1) and (2), the terms in the velocity and pressure

power series can be related to u;, w;, and Py. Consequently,
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These series expansions should represent fully the portion of the three-
dimensional flow structure which is dominated by the wall boundary condi-
tions. However, tﬂe functional forms of‘ul,wl, and Py cannot be deter-
mined without imposing "outer” boundary conditions characterized by the flow
structure in the outer portion of the boundary layer. Since "bursting” and
"inrush"” flow phases are both intermittent and occur at the top of streak
structures, application of realistic outer boundary conditions to the streak
structures is not currently possible.

Alternatively, if one assumes that the near wall flow structure is rep-
resented by Eqs. (8) through (11), the connection between these observed
three-dimensional flows an& the known two-dimensional time-averaged velocity
profiles can be addressed. Kline et al.? found that wall bound "low—speed
streaks” were stable out to between 8 and 12 wall units (8 < y+ < 12).

They observed further that oscillation and "bursting” of these structures
took place when they extended out to between 10 and 30 wall units. Based on
those observations, the time~averaged forms of Eqs. (8) through (11) should
be consistent with the time-averaged velocity profile data beyond y+ = 8,
but not beyond yt = 30. The x~component of velocity (u) for turbulent

flow over a flat plate with no pressure gradient is the most documented
experimentally and therefore attention is restricted here to Eq. (8).

Making use of the identity:

-
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Eq. (8) can be averaged with respect to time for two-dimensional flow past a

flat plate to yield:
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Furthermore, the time average of uj(x,z,t) must be equal to R.

Now Reynolds number, R, was assumed constant in the dimensionless
formulation of the equations of motion. However, in order to investigate
the magnitude of the coefficients in Eq. (13), variation of R with dimen-

sionless x must be examined. Schlichting3 has tabulated R, ReL, and C%
' UL
where ReL and C% are the length—-based Reynolds number -5 and local skin

friction coefficient, respectively, over a range of length~based Reynolds

- numbers from 105 to 10°. It can be shown that

Re c! 172
x = —| = (14)

and the variation of R with x over the entire range of length Reynolds
numbers is shown in Figure 1. For length Reynolds numbers above 200,000,

R varies semilogarithmically with x and is well approximated by:

R = 2.42 exp(0.1615 x) (15)
Consequently,
o—
d u 42R
=2 "~ 0.026 R (16)
a2 d



For boundary-layer flow, the dimensionless-Reynolds stress, g (= - W¥),
varies with the third power of y, leaving the wall.® Furthermore, u; vy
can be related directly to the third derivative of the dimensionless

Reynolds stress with respect to y+ at the wall (ow"') by:

R L 1 te l( +)L+ ‘
—uw y =-—49g y
4 2% ¥ a7
Bu% .
and although —— need not be zero, it must certainly be small compared to
ax

u; w. Consequently, the coefficient for yl+ in Eq. (13) is well approximated
by Eq. (17) and utilizing the fact that u = u¥, along with Eq. (16),

we can write
-3 3 o ' Lt
ut =yt - _8.:_7._"_2_39_._ (y+) = o (y+) + e (18)
R .

For y* greater than 5, but less than 35, experimental velocity data

cannot be approximated simply by either a linear or a logarithmic velocity
profile. However, Spalding5 and Kleinstein® havgkshown that experimental

velocity profile data in that range are represented very well by the

equation

19

where Spalding used ¥ = 0.4, B = 5.5. That equation cannot be inverted

directly to a power series in u+(y+), but a polynomial fit of Eq. (19)



is less sensitive to scatter than a polynomial fit of tabulated experimental

data.

A regression analysis computer program has been used to generate poly-

nomials in the form

10

+ + +

u =ay + ) a (v " (20)
n=3

+ o+
which approximate Eq. (19) over a prescribed interval 0 < y < Yy» Where

+
Yy was varied between 5 and 100. The polynomials were generated by creating
data tables consisting of 101 "data points" which were produced by using Eq.
. . + . + .
(19) to determine a maximum u corresponding to v then computing a set of
+ + + + ..
y (u_ ) where u = (n-l)uM/lOO. The zero intercept (a ) and a, coefficients
n n n 0
were excluded on physical grounds, while a; was allowed to vary even though
© its value was required physically to be unity. The polynomial was truncated
at the tenth power because that was considered a high enough power of y+
to simultaneously allow the regression analysis program to exclude unneeded
terms and still remain efficient computationally.
+
In order to desensitize the polynomial fit from the magnitude of Yu
+ + + o
[since (yM)10 could be very large], y was normalized in terms of Iy G =

+
y /y;) and the polynomials were found to take the form

u =y, (bF + b3¥3 - bF* + bgF® + by FLY) (21)

+
over the range 5 < M < 20. Variation of those coefficients with respect to

Y§ are shown in Figure 2.



Based on previous discussion, b; must be unity-and, as can be seen in
Figure 2, it meets that condition to a very good A£proximation over the
entire range. The constraints imposed on by from Eq. (18) are not as easily
met. In‘fact, since R must‘be greater than 200 for any turbulent flow, it
is apparent from Eq. (18) that b3 mist be a very smgll negative number.

That requirement restricts the polynomial fit to 15 < y§ < 15.3.
Since by = 0 for virtually all turbulent boundary-layer flows, that -

<+

case is taken as the nominally correct polynomial for u’ in the wall flow

regime. There

4 6 '
ot = Looy - 2,21 x 10 D) + 7,20 x 1075 - 2.7 x 107120 (22)

The variation of u® with y* given by Eq. (22) is compared with Eq. (19)
using Spaldings' constants in Figure 3. The Figure shows that the curves
are essentially identical over the range of the fit and that the polynomial
departs rapidly outside of the domain. The good agreement out to a y+ of
about 15 is remarkably comsistent with the streak observations of Kline et
al.2 The present results suggest that three-dimensional flow structures
dominated by wall requirements can be modeled out to a y+ of about 15
where coupled interactions or instabilities must then be considered.

Finally, the fact that b, is related directly to the third derivative
of —uv at the wall can be used as a further check of the physical consist-
ency of Eq. (22). By integrating o,''' implied from Eq. (22) and

requiring that ow,ow' and OW" be zero at the wall, it is found that



oyH) = - ) = 0.00088 (y+>3 + e (23)

This  relationship is compared with Townsend's formula’:
— +\3
~uv = 0.0006 (y ) (24)

and the experimental data of Schubauer® and Laufer® (for a pipe flow) in
Figure 4. Since the next term in Eq. (23) will necessarily reduce the
magnitude of ;E;, the agreement of the present analysis with the other

data is very good.
Conclusions

We have shown that a polynomial fit of Spaldings' equationS for ut
yields a solution which is consistent with requirements imposed by a time-
averaged solution to the equations of motion. If one accepts the hypothesi
that the flow structures along the wall of a flat plate, turbulent boundary
layer should be modeled mathematically as power series in y, the time
average of that solution is consistent with classical velocity prqfile data
out to yt = 15. At that point, the coefficients in the polynomial fit
begin to diverge from the requirements imposed by the equations of motion.
Thgse_resultsJare consistent with the streak observations of Kline et al.z,
and our results suggest that the mathematical character of the streak
structure changes above y* of 15.

A logical explanation for that change is intermittent coupling be-
tween outer and inner flow structures beyond yt = 15. Coupling may either
be through a superposition of two structures or an instability produced

by a disturbance from the outer flow. Under those conditions, the wall-

s

10



controlled solution is applicable for only part of the cycle. Concurrently,

the results suggest that a series solution which is in some sense periodie
in z and t can be employed to model streaks out to y+ of 15 without direct
consideration of the outer flow structures.

Finally, the good agreement between the Reynolds stress estimation
resulting from this approach and experimental data suggests that the poly~-
nomial series based on a wall flow structural hypothesis is consistent with

the observed physics.
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in units of boundary-layer thickness.

12



.Mh Yatms (1z) bz ur s31usIOIIFe0d Ayl JO UOTIBTABA 7 2anBr4g

— .v.o.l
N " zo-
= = e w——
/_/1/ \.\.\“\\\f \\\\
O e ’ \\
\\\ -~ -1¢°0
\\ \\\
\\\ \ ] .T O
L / O_a —_——
- \\\\ \\ 9q —--- -{9°0
T S
S €q—-— -8
Iq—
_ o'l

13

JANLINOYW LN3ID144309



G¢e O¢ Gl

“(z2)
3113 uolssaiafax ayl YyITM (61) °ba woay oTrjoad L3rd0T9a Byl usamlaq uvostaedwo)

*¢ 2an3tg

_
\
\
\
\
\

(22) NolLvNOD3\

gONIQIVdS

114 40 NIVAOQ

Ol

Gl

14



1.0

0.8

0.6

PRESENT PREDICTION
———TOWNSEND

SHUBAUERS, FLAT PLATE

0.4 © (Reg=8 x 104)
LAUFERS, PIPE
[ i} 5
- (Re = 5 x 107)
0.2
- | | | | | | | | |
0.9, 20 40 60 80 100
L -
y

Figure 4, Comparison between the predicted Reynolds stress.leav-

ing the wall and the experimental measurements of
Schubauer® and Laufer®.
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